报告题目: 3D打印具有增强的损伤弹性的连续纤维增强和仿生层状复合材料
3D printing continuous fibre reinforced and bio-mimicked layered composites with enhanced damage resilience
报告时间:2023年4月19日(星期三)13:30-15:05
报告地点:机械馆J3报告厅
报告形式:线下
报告人:Prof Jiye Chen
报告人简介:
Prof. Jiye Chen现任香港理工大学理工学院计算损伤力学系主任和英国朴茨茅斯大学材料、结构和岩土工程研究小组组长。1997年,他在伯明翰大学获得复合材料结构计算力学博士学位。作为研究员,他曾经任教在伦敦帝国理工学院、南安普顿大学和布里斯托尔大学的英国顶尖大学。他于2006年被朴茨茅斯大学任命为高级讲师,2021年分别晋升为教授。Chen教授是研究损伤力学方面的专家。他的研究领域包括计算非线性损伤力学;复杂纤维复合材料结构的设计、仿真与试验;复合胶粘剂修复技术;提高复合材料损伤弹性的仿生设计用于工程材料和结构健康监测的扩展数字图像相关 (EDIC);扩展内聚损伤模型 (ECDM)用于预测和优化纤维复合材料的断裂行为,以及3D打印生物模拟层合复合材料。Prof. Chen发表了超过100篇国际期刊和会议论文、书籍章节和专利技术。他的研究得到了英国政府资助机构和大型工业公司的资助。Prof. Chen是多个国际学术机构或组织的成员,其中包括欧洲力学学会、国际复合材料力学及复合材料结构会议科学委员会,以及国际Juniper Journal、Juniper Publishers Inc.的编辑。
Biography
Prof Jiye Chen is a Chair in Computational Damage Mechanics and the Leader of the research group for Materials, Structures and Geotechnics in the Faculty of Technology, University of Portsmouth, UK. He completed his PhD in computational mechanics of composite structures from the University of Birmingham in 1997. As Research Fellow, he worked with several leading UK universities, including Imperial College London, Universities of Southampton, and Bristol. Prof Chen is an expert in computational damage mechanics. His research covers computational nonlinear damage mechanics; design, simulation and test of complex fibre composite structures; composite-adhesive repairing techniques; bio-inspired design for improving damage resilience of composites; extended digital image correlation (EDIC) for health monitoring in engineering materials and structures; extended cohesive damage model
(ECDM) for predicting and optimising fracture behaviour of fibre composites; and 3D printing bio-mimicked laminated composites. Prof Chen published over 100 international refereed journal and conference papers, book chapters and patent technologies. His research was funded or warded by UK governmental funding organizations and leading industrial companies. Prof Chen is members in several international academic institutes or organizations, including European Mechanics Society and Scientific Committee of International Conferences on Mechanics of Composites, and Composite Structures, and a Editor of International Juniper Journal, Juniper Publishers Inc. USA.
报告内容简介:
本次讲座介绍了一种新的3D打印增材制造技术来制备仿生复合材料。其可以连续生产纤维增强和仿生层状复合材料,并在厚度方向增强损伤弹性。该技术由野生羊角中的生物小管结构开发而成,具有高损伤弹性,并使用扩展内聚损伤元件(ECDE)方法进行优化,增材制造过程通过商用3D复合打印机完成。该技术已通过3D打印样品的机械弯曲测试得到验证。与传统工艺生产的“三明治”结构的普通复合材料相比,该技术可提高90%以上的抗损伤能力,降低94%的制造成本,生产速度快50倍。同时,根据弯曲试验结果进行了整体力学性能和断裂性能分析。研究了使用ECDE和传导材料特性的建模预测,并与测试解决方案进行了验证。该技术为生产具有增强损伤恢复能力的未来复合材料提供了一种高成本效益的方法,可以在广泛的工程领域取代一些重要的金属部件和传统复合材料。
Abstract
This lecturer introduces an innovated 3D printing technology to additively manufacture bio-mimicked composites. It aims to produce continuous fibre reinforced and bio-mimicked layered composites with enhanced damage resilience in the through thickness direction. This technology is developed from bio tubules in wild sheep’s horns with high damage resilience and optimised using the extended cohesive damage element (ECDE) method, and the additive manufacture process is completed through a commercial 3D composite printer. This technology has been validated using 3D printed samples through mechanically bending tests. It can enhance damage resilience by more than 90%, reduce manufacture costs by 94% and produce products 50 times faster comparing to common composite sandwiches produced by traditional technologies. Meanwhile, an overall mechanical and fracture properties are conducted based on the bending test outcomes. A modelling prediction using the ECDE and the conducted material properties are investigated and compared with test solutions for validation. This technology provides a highly cost-effective approach to produce future composites with enhanced damage resilience to replace some important metallic components and traditional composites in a wide range of engineering sectors.
机械工程学院
2023年4月17日